Exam Modeling of Business Processes 17 December 2002

This exam consists of 4 problems, each consisting of several questions.

All answers should be motivated, including calculations, formulas used, etc.

It is allowed to use 1 sheet of paper (or 2 sheets written on one side) with **hand-written** notes.

The minimal note is 1. Questions 1, 2, and 3 each give 2 points when correctly answered, question 4 can give 3 points.

The answers may be written down in English or in Dutch.

To be handed out as well: table with the standard normal distribution function.

The use of a calculator is allowed.

- 1. A call center planner uses the Erlang C formula for computing the service level.
- a. Give 3 aspects in which the Erlang system does not model most call centers exactly, and explain how this influences the service level.

The planner estimates the input parameters as follows: $\lambda = 10$ and $\beta = 2$. With 24 agents the probability of waiting less than 20 seconds is 0.85, according to the Erlang C formula.

b. What is the productivity?

A colleague analyses the data and says that λ is not always exactly 10, but that it can be somewhere between 9 and 11.

- c. How many agents would you schedule to be sure to have approximately an 80% service level? What can you say about the productivity?
- d. Explain two possible measures in many call centers that can help to deal with a λ that is not completely known, such that both the service level and the productivity are high.
- 2. Consider a 2-out-of-3 system (thus a system that is up if at least 2 of its 3 components are up) with components that have independent identically distributed life times.
- a. Give a closed-form expression for the availability of the system at some time t as a function of the probabilities that the components are up.

Suppose that life times are exponentially distributed.

b. What is the life time distribution of the system?

Suppose that there is a single repairman, and that repair times are also exponential.

c. Give a formula for the long-run probability that the system is up.

- 3. An agricultural firm harvests K kilograms of a certain product. The company has two ways to sell their product: to Albert Heijn at a price p_r per item or at a market at a price p_m . Albert Heijn will buy all the firm is willing to sell them, the demand at the market D is random. Leftover products are worthless.
- a. Formulate your expected income as a function of the amount of product that you sell to Albert Heijn.
- b. Give the policy that maximizes your expected income.
- c. Calculate the policy for K = 1000, $p_r = 0.9$, $p_m = 1.0$, and D is normally distributed with expectation 1100 and standard deviation 300.
- d. The management is not only interested in maximizing expected income, but is also risk-averse. What should management do in your opinion? Explain yourself using heuristic arguments.

- 4. A machine does two operations consecutively, each operation having an independent exponentially distributed processing time (with averages β_1 and β_2). Assume that input and output buffers can accommodate any number of parts. Orders arrive according to a Poisson process with rate λ .
- a. For which parameter values is the waiting time finite?
- b. Give an expression for $\mathbb{E}(X+Y)^2$ for general and independent X and Y.
- c. Calculate the waiting time for $\lambda = 1$, $\beta_1 = 1/2$, and $\beta_2 = 1/3$.

Now assume that it is possible to change the machine such that the two operations can be executed at the same time.

- d. Show that the service time is of the form X + ZU + (1 Z)V, with X, U, V, and Z independent and $Z \in \{0, 1\}$.
- e. Give an expression for $\mathbb{E}(X + ZU + (1 Z)V)^2$.
- f. Calculate again the waiting time for $\lambda = 1$, $\beta_1 = 1/2$, and $\beta_2 = 1/3$.